
9 Power laws

9.1 Introduction to power laws

The mathematical models of biological systems I considered so far are conceptual in some sense. That
is, they describe qualitative phenomena, and less suitable for quantitative description of available data.
This does not mean, of course, that the models I discussed can be used for a quantitative analysis
(e.g., it is a fact that the exponential growth does describe the population increase when the supply is
virtually unlimited, and the logistic equation can be used to estimate the population carrying capacity
in some cases), but such applications should be performed with great care and understanding of a huge
amount of simplifying assumptions put into these models. Sometimes, however, our models should be
able to describe an observed phenomenon not only at a qualitative level, but also quantitatively. In
this lecture I plan to discuss one such phenomenon and possible mathematical models explaining it.
Let me start with a biological example.

In biological classification species is the lowest possible rank, and species are grouped together in
genera (or, singular, genus). The next taxonomic unit is a family. Therefore, I can talk about the
distribution of the number of species in different genera in a given family. Such data can be collected
and analyzed. An example of such data is given in the figure below (this example is borrowed from a
wonderful paper by G. Yule1)

Here the distribution of the sizes of the genera is shown for the family Chrysomelidx. The word
“distribution” means that the number of genera with one species was counted, with two species, with
three species, and so on, and after it these numbers were plotted against species numbers (to be more
precise, for genera with more than 9 species actually intervals of number of species were considered,
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i.e., the number of genera with 9–11 species, with 12–14 species, with 15–20 species, and so on, the
data can be found in the cited paper). Also note that both axes in the figure have logarithmic scaling,
i.e., the natural logarithms of the number of genera are plotted versus the natural logarithms of the
number of species in a given genera. The observations clearly follow a very simple pattern, namely, in
double logarithmic coordinates they are very close to a strait line. That is, if I denote p(x) the number
of genera (or sometimes it is more convenient to talk about frequency, i.e., the number divided by the
total number of observations) with x species, then I have

log p(x) = a− α log x,

where a and α are positive constants. Therefore, in the usual coordinates

p(x) =
A

xα
, A := ea. (1)

Distributions of the form (1) are said to follow a power law. It is a very surprising fact (well, for me
at least) how many quantities around us follow a power law asymptotically, starting from some x0.
The constant α is called the exponent of the power law.

Here is another example. Consider a distribution of the cites in USA with population more than
40000 (I pick this number arbitrary). There are slightly over 1000 such cities, and it is clear that the
number of cities with large populations is very small (I cannot have more than 40 cities of the size of
New York in USA not to exceed the total population). You can see a histogram of this distribution in
the figure below.

By “histogram” I mean that I took the whole interval from 4 × 105 to 8.2 × 106 (the population
of New York), divided into 50 intervals or bins (50 is taken as an example, a good rule of thumb is to
take the number of intervals as

√
N , where N is the number of observations, in my case N = 1036)

of equal length, and counted the number of cities in each interval, after that I plot these numbers
versus the centers of the intervals. You can see that both attempts to present the data are not very
successful: In the left graph the number of cities with relatively small populations dominate the figure,
in the right figure (with double logarithmic coordinates) the fact that the number of cities with large
populations is very small brings a lot of noise.
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Figure 1: The distribution of the city population in USA for the cities with more than 40000 people.
Left: Usual coordinates, right: double logarithmic coordinates
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To overcome this difficulty I can follow G.Yule and make logarithmic binning, i.e., I divide not into
the intervals of equal length, but such that the length of the second interval β times bigger than the first
one, where β is a suitably chosen constant, and so on. You can see the result of these manipulations
in the figure below. This time the result is better, especially in the logarithmic coordinates, but still
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Figure 2: The distribution of the city population in USA for the cities with more than 40000 people.
Left: Usual coordinates, right: double logarithmic coordinates. In both cases the logarithmic binning
is used, number of bins 50

the histograms contain a lot of obvious noise, especially for large cities.
Let me change the number of bins (intervals) from 50 to 11. Here what I get:
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Figure 3: The distribution of the city population in USA for the cities with more than 40000 people.
Left: Usual coordinates, right: double logarithmic coordinates. In both cases the logarithmic binning
is used, number of bins is 11

Therefore, based on the presented data it is quite reasonable to formulate a hypothesis that the
city population distribution follows a power law.

Instead of playing with the number of bins and different binning strategies, it is often more conve-
nient to represent the data in a different way. Namely, consider again p(x), which I define now as the
proportion of the quantity of interest in the interval from x to x+ dx, where dx is sufficiently small.
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Since p(x) gives a proportion, I should have∫ ∞

xmin

p(x) dx = 1,

where xmin > 0, because otherwise the integral will diverge. In the language of probability theory, my
p(x) is called the probability density function. The chance that a given randomly picked city will have
a population from x1 to x2 (note that it does not make much sense to talk that a city has a population
exactly 45672, I need to provide an interval to get a meaningful answer) is given then

P {x1 ≤ x ≤ x2} =

∫ x2

x1

p(x) dx,

and here I use the notation P {A} to denote the probability (chance) of event A. Now instead of p(x)
consider function

F (x) = P {Population of a city not less than x} =

∫ ∞

x
p(ξ) dξ =

A

α− 1
x−(α−1) =

(
x

xmin

)−α+1

,

which also follows the power law (here I found A such that
∫∞
xmin

p(x) dx = 1). The advantage of F is
that this function is well defined for any x given the data, I simply need to calculate the proportion
(or the number) of cities, whose population is bigger than x. If F follows the power law, therefore the
data should have the power law distribution. The graph of F is often called rank or frequency plot,
because the value F (x) is proportional to the rank of x (see the figure). Here I see exactly the same
pattern that the data in double logarithmic coordinates can be describes by a straight line, and hence
the data themselves follow the power law.
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Figure 4: The function F (x) = #{Cities with population not less than x} versus the city population
in double logarithmic scale

To impress you even more, consider now the word count is a book (I picked On the Origin of
Species by Charles Darwin, but a similar picture can be observed for other texts), and consider the
distribution of the counts in a text, i.e., how many words were used only once, how many words were

4



used twice, three times, and so on. It is quite clear that there should be a significant number of words
that were used only few times, and not so many words that are used in almost every paragraph, but
what is the actual distribution of these numbers?

Just for curious, here are 10 words that appear most often:

the, of, and, in, to, a, that, have, be, as

and here are several examples of the words that appear only once:

last, decision, personal, drew, patiently, 1837, philosophers, mysteries, INTRODUCTION.

The function F , which gives the number of words used not less than x times can be plotted (see
the figure below), and the result, which shows that is not unreasonable to put forward the hypothesis
of the power law, is known in linguistics as Zipf’s law.
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Figure 5: The function F (x) = #{Words used more than x times} versus x in double logarithmic
scale

The list of examples can be easily continued. In particular, the available data suggest that the
following quantities obey the power law: citations of scientific papers, copies of books sold, magnitude
of earthquakes, intensities of wars, wealth of reaches Americans, frequencies of family names, etc (for
those interested to read much more about power laws I recommend this paper2).

Here are a few points about power laws. In the literature a more general definition of the power
law distribution is used. A quantity X is said to have a power law distribution with exponent α if it
has a probability density function

p(x) ∼ Ax−α,

i.e., if p(x) behaves similarly to the exact power law asymptotically, for large x. Since one assumes
that usually X takes values in the interval (xmin,∞), then it is necessary to request that α > 1 to
guarantee that the integral ∫ ∞

xmin

p(x) dx

2Clauset, A., Shalizi, C.R., & Newman, M.E. (2009). Power law distributions in empirical data. SIAM review, 51(4),
661-703.
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converges. Very important quantities that describe X are its moments; two most important are the
expectation E (X) (the first moment) and the variance Var (X) (the second central moment), they are
defined as

E (X) =

∫ ∞

xmin

xp(x) dx, Var (X) =

∫ ∞

xmin

(
x− E (X)

)2
p(x) dx.

The expectation shows the average value of X and the variance shows the spread of X around E (X),
the bigger the variance the less predictable quantity X becomes. A very important fact is that for
the variance to exist α has to be bigger than 3 and for the expectation to exist α has to be bigger
than 2. It turns out that the estimates of α from available data usually show that 2 < α < 3, i.e., the
observed quantities follow the power law with infinite variance. This is why such distributions usually
called fat-tailed distributions.

Example 1 (80/20 law). Let me ask the question where the majority of the distribution of X lies if
X has a power law distribution. Consider for example such value m that∫ ∞

m
p(x) dx =

1

2

∫ ∞

xmin

p(x) dx.

m is called the median of the distribution. For the power law I find that

m = 21/(α−1)xmin.

For example, if X is the wealth, then m is such income that exactly 50% people have smaller income
than m and 50% of people have bigger income than m. I can also ask how much income lies in these
two halves. The fraction of money of the reacher half is given by∫∞

m xp(x) dx∫∞
xmin

xp(x) dx
= 2−

α−2
α−1 ,

provided α > 2 and the integrals converge. Therefore, if, say α = 2.1 (estimated from data), then the
fraction of 2−0.091 ≈ 0.94 of the wealth in the hands of the richest half. A generalization can be made
that the fraction

W (p) = p
α−2
α−1

of the wealth in the hands of the richest p. Using this expression, I can see that approximately 80%
of the wealth in the hands of the richest 20%, hence the famous 80/20 law.

Finishing this section I would like to mention that power law distributions are also very often
called scale-free distributions. I saw several different explanations in the literature to justify the use
of this term, however none of them is very convincing, therefore, it would be a much better practice
to stick to more informative “power law distribution”.

9.2 Birth–death–innovation model of protein domain evolution

Proteins consists of domains, that can be defined as structural elements of a given protein that can
function and evolve independently of the rest of the protein chain. One of the main mechanisms of
genome evolution is duplication, which corresponds to appearance of two copies of the same sequence of
DNA in genome. If a particular DNA sequence corresponds to a protein domain, then after duplication
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Figure 6: The function F (x) = #{Families with not less than x domains} versus x in double loga-
rithmic scale for Homo Sapience

of this sequence there will be two similar domains that belong to the same family. It turns out that
the distribution of domain families follows asymptotically the power law (see the figure).

In this section I present a mathematical model of the domain evolution that produces the power
law with exponent α = 1.

Consider possible elementary events in genome evolution:

• Domain birth. This is usually caused by duplication and forces a family with k domains becomes
the family with k + 1 domains;

• Domain death. This is usually caused by inactivating mutations and results in a family with
k − 1 domains if there were originally k domains;

• Domain innovation. This event gives birth to a new domain family with 1 domain. This can
happen for several reasons, one of which mutation in one of the existing domain such that the
domain stays functional, but now it is so different from the rest of his siblings that I count it as
a new domain family.

Assume that it is possible to have maximum d domains in a family, and let xk be the number
of families with k domains, k = 1, . . . , d. Assume that the rates of duplications and inactivating
mutations are constant per one domain and denote them λ and µ respectively. I have that the rate of
change of the number of domain families with only one domain is given by

ẋ1 = −(λ+ µ)x1 + 2µx2 + ν.

Here −λx1 term corresponds to duplication that makes one of such families a family with two do-
mains, −µx1 term corresponds to possible mutation that destroys one family, 2µx2 describes possible
inactivating mutations in the families with two domains, and coefficient 2 comes from the fact that
each family among x2 has 2 domains, finally ν denotes a constant rate of domain innovations. For the
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rest of the variables I have

ẋk = (k − 1)λxk−1 − k(λ+ µ)xk + (k + 1)µxk+1, k = 2, . . . , d− 1,

ẋd = (d− 1)λxd−1 − dµxd.

It is convenient to write the system of ODE in the vector form

ẋ = Ax+ ν, (2)

where the matrix A is given by
−(λ+ µ) 2µ 0 . . . 0

λ −2(λ+ µ) 3µ . . . 0

0 2λ
. . . . . . . . .

...
...

... −(d− 1)(λ+ µ) dµ
0 0 . . . (d− 1)λ −dµ

 ,

and the vector ν = (ν, 0, . . . , 0)⊤. One can check that detA = (−1)dk!µd ̸= 0 if µ ̸= 0, and hence
there is unique equilibrium x̂, which is the solution to

Ax = −ν.

The stability of this equilibrium is determined by the real parts of the eigenvalues of A because the
change of variables x = y −A−1ν leads to the system that we studied: ẏ = Ay.

Theorem 2. Consider system (2) and let θ = λ/µ. Then equilibrium x̂ is asymptotically stable and
given by

xk =
ν

λ

θk

k
, k = 1, . . . , d,

and has the power law form with exponent 1 if and only if θ = 1, i.e., if λ = µ.

To prove this theorem I need first to establish that the coordinates of the equilibrium exactly as
given and that matrix A has eigenvalues with negative real parts. For the second part I will need the
following fact (without proof):

Proposition 3. Consider matrix A with nonnegative non-diagonal elements and its principal minors
Mk, k = 1, . . . , d (i.e., the determinants of the matrices obtained from A by keeping first k columns
and rows). Matrix A is asymptotically stable (i.e., for all eigenvalues it is true that Reλ < 0) if and
only if (−1)kMk > 0 for all k = 1, . . . , d.

Proof of Theorem 2. First, by summing all the equations in (2), I find that

−µx1 + ν = 0 =⇒ x̂1 =
ν

µ
.

Now from the second equation in (2) I can find x̂2, from the third x̂3 and so on, which proves the
formulae for the coordinates of the equilibrium.

8



I have that M1 = −(λ + µ), and Md = detA = (−1)dd!µd (the last expression can be found by
first adding the last row of A to row d− 1, after that row d− 1 added to d− 2 and so on, eventually
I will get a diagonal matrix with (−µ,−2µ, . . . ,−dµ) on the main diagonal).

Now consider matrices Mk such that Mk = detMk, k = 1, . . . d − 1. By using the determinant
formula through the last row, I find

Mk = detAk − kλMk−1,

where Ak is k× k matrix of the same structure as A and whose detAk = (−1)kk!µk. I know M1, and
hence can find M2 and so on. The general formula is given by

Mk = (−1)kk!
λk+1 − µk+1

λ− µ
,

which proves that all the eigenvalues of A have negative real parts. �

The biggest question of course is how to modify the model to obtain a power law distribution with
exponent other than one. For this one can assume that the birth and death rates are not constant
and depend on the size of a given family. E.g., I can assume that the birth rate is λk and the death
rate is µk per domain family of the size k (we retrieve the model, which was analyzed above, if we set
λk = kλ, µk = kµ). The following theorem holds3.

Theorem 4. Birth–death–innovation model with the size dependent birth and death rates has a unique
asymptotically stable equilibrium x̂ ∈ Rd with coordinates

x̂i =
ν
∏i−1

k=1 λk∏i
k=1 µk

, i = 1, . . . , d.

This equilibrium distribution follows asymptotically the power law distribution with exponent α if and
only if

λk−1

µk
= 1 +

α

k
+O(k−2).

For example, according to this theorem, the model with λk = λ(k + a), µk = µ(k + b) for some
constants a ̸= b will produce a power law with the exponent a− b− 1 if λ = µ.

9.3 Preferential attachment

Here I present a heuristic derivation of the power law distribution via the so-called principle of pref-
erential attachment (in this subsections I follow mainly this paper4). Consider the World Wide Web,
with can be represented as a directed graph, where the vertices correspond to the web pages and there
is an edge from vertex i to vertex j if there is a hyperlink from page i to page j. Now each page
can be characterized by the number of hyperlinks to this page, in the graph theoretic language this
number is called the in-degree. Therefore, I can talk about the in-degree distribution and it turns out

3Karev, G. P., Wolf, Y. I., Rzhetsky, A. Y., Berezovskaya, F. S., & Koonin, E. V. (2002). Birth and death of protein
domains: a simple model of evolution explains power law behavior. BMC evolutionary biology, 2(1), 18.

4Mitzenmacher, M. (2004). A brief history of generative models for power law and lognormal distributions. Internet
mathematics, 1(2), 226-251.
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that this distribution can be closely approximated by a power law. Assume that a new web page is
created. It is reasonable to expect that this new page will link to some popular web pages, i.e., the
chance that a new web page is connected to a web-page with in-degree k should be proportional to k,
and this is what is usually called the preferential attachment principle.

Here is an informal argument to formalize the preferential attachment. Let xj(t) be the number
of web pages with in-degree j when there are t pages total. Then, for j ≥ 1 the probability that xj(t)
increases is simply

α
xj−1(t)

t
+ (1− α)

(j − 1)xj−1(t)

t
,

if I assume that new web page appears with only one link to existing pages, and this one link is chosen
randomly among all t pages with probability α and with probability 1 − α this one link is chosen
randomly but with probabilities proportional to the existing in-degrees (preferential attachement).
Similarly, the probability that xj(t) decreases is

α
xj(t)

t
+ (1− α)

jxj(t)

t
.

Therefore, for j ≥ 1,

ẋj =
α(xj−1 − xj) + (1− α)

(
(j − 1)xj−1 − jxj

)
t

.

The case j = 0 should be treated differently since each new web page has in-degree 0, and therefore

ẋ0 = 1− αx0
t

.

I obtained a non-autonomous system of linear ordinary differential equations. Since the time unit in
the model is appearance of one new web page, I can assume that the limiting stationary state should
have the form

xj(t) = cjt,

where cj is a constant, which specifies which fraction of the total number of the pages with in-degree j.
I have for x0

ẋ0 = c0 = 1− αc0 =⇒ c0 =
1

1 + α
.

For general j
cj(1 + α+ j(1− α)) = cj−1(α+ (j − 1)(1− α)).

I can determine cj exactly using the above recurrence, but for my goal it is enough to note that

cj
cj−1

= 1− 2− α

1 + α+ j(1− α)
∼ 1−

(
2− α

1− α

)
1

j
.

This yields that asymptotically

cj ∼ Cj−
2−α
1−α ,

for some constant C. To see this, note that the last expression means

cj
cj−1

∼
(
j − 1

j

) 2−α
1−α

∼ 1−
(
2− α

1− α

)
1

j
,

as required.
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